CUNY Models of PA seminar, September 2020

Abstract: In 2009 Roman Kossak and I showed that the classification of countable models of PA is Borel complete, which means it is as complex as possible. The proof is a straightforward application of Gaifman’s canonical I-models. In 2017 Sam Dworetzky, John Clemens, and I showed that the argument may also be used to show the classification of countable models of ZFC is Borel complete too. In this talk I’ll outline the original argument for models of PA, the adaptation for models of ZFC, and briefly consider several subclasses of countable models of ZFC.